半导体加工工艺,本质上就是一个在硅晶圆上,不断曝光,蚀刻的过程🗗🛲。
而这个工艺的提升的过程,就是曝光时所用的底片图案🙎🉐,不断进🎷行增密的一个过程。
在大家的传统印象里,底🁨片的增密,就是底片精度的提高过程。🎷增密底片图案,除了提高光刻机精度,就没有别的办法了吗
在🞒我们的日常生活当中,有个不恰当的例子,那就是套色印刷或者是彩色打印。
三色墨水,每个打🉤🉐🆜印的精度都是相同的,但🏠🛡是三色重合打印,单色就变成了彩色
颜色的精度,就从单色的8位,上升到♀🅐🅱了256位
在2005年之后,由于工艺制程的提升,🏠🛡最小可分辨特征尺寸已经远远小🀞♠于光源波长,利用d🀱uv光刻机已经无法一次刻蚀成型。
既然♻🍧无法一次刻蚀成型,那就多刻蚀几次,每一次刻蚀一部分,然后拼凑成最终图案。
从每个部分图🝻形的加工过程来说,用的都是原有的加工🙎🉐方法和设备😵,但它可以实现更高精度的芯片加工。
它就是多重图案化技术
多重♻🍧图案法就是将一个图形,分离成两个或者三个部分。🛒🛲每个部分按照通常的制程方法进行制作。整个图形最后再合并形成最终的图层。
按照这个理论🝻,图形精度简直可以无限分割下去。
但实际上,这个方案也有它的局限。
光刻机🕴🍱,做到了极限,是🁨因为光**长的缘故。
图案分割,做到最后,也会有这个问题。
当光罩上图😫🄑形线宽尺寸接近光源波长时,衍射将会十分明显🐓。
光刻机内部光路对🉤🉐🆜于光线的俘获能力是有限的,如果没有足够的能量到达光刻胶上,光刻胶将无🀱法充分反应,使得🂏🍳🌆其尺寸和厚度不能达到要求。
在后续的显😫🄑影、刻蚀工艺中起不到应有的作用🚧,导致工艺的失败。
所以用这个方法,步进到7n🞙🔤🂩,就做不下去了。因为从🙎🉐原理上就出现了问题🀞♠。
7n之后,必须使用e🏄🗧🝾uv光刻机,那个对中国禁运的光刻机,就是这个道理。
在这个阶段,它还不是个问题。阻碍晶圆工🏠🛡艺进步的主要原🐓因,来自生产设备,工艺,而不是原理。
任何事情都有利有弊。
这种技术的优点非常突出。那就是不需改变现有设备,或者是做很少的改变,就可🁹以达到提高晶圆工艺的要求。
但弊端也很突出。